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This paper is concerned with re-entrant cell honeycombs which show in-plane
negative Poisson's ratio values, in which their anisotropic mechanical properties
are described using the cellular material theory. Out-of-plane shear moduli are
a!ected by the unit cell geometric parameters and, for some ranges of the latter, it is
possible to obtain higher values of the shear moduli compared to those of a regular
hexagonal honeycomb, in particular for cell geometries with a negative Poisson's
ratio. A "rst order sandwich plate theory is applied in order to obtain the
fundamental frequencies of sandwich laminates in cylindrical bending and for the
simply supported case. Sensitivities of the frequencies per unit mass versus the
geometric cell parameters are also calculated. The results suggest that the dynamic
performance of a sandwich structure could be signi"cantly improved with a proper
design of the unit cell shape of the honeycomb. In particular, re-entrant cell cores
o!er improvements in bending sti!ness capabilities for particular cell parameter
ranges.

( 2000 Academic Press
1. INTRODUCTION

When a sample of material is stretched it is naturally expected that a contraction in
the direction perpendicular to the stretching one will occur. The expectation arises
from the fact that all naturally occurring materials appear to exhibit this property.
The Poisson ratio is the quantity de"ning this fundamental material feature.

For an isotropic material the Poisson ratio is de"ned by

l"
!e

y
e
x

, (1)

where e
x

is the tensile strain in the stretching direction and e
y

the tensile strain
perpendicular to this. Since most materials contract in the perpendicular direction
to the applied load the presence of a minus sign in the de"nition ensures a positive
value of the ratio. On the contrary, a material with a negative Poisson's ratio
expands in all directions when pulled in only one, leading to an increase of its
volume. Evans [1] was the "rst to de"ne such materials as auxetic, from the Greek
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atmeqop (that may be increased), to avoid the cumbersome phrase &&materials with
negative Poissons ratio''.

It has to be pointed out that the positive strain energy theory of isotropic
elasticity allows the Poisson ratios in the range between !1 and 0)5. The upper
limit of the Poisson ratio corresponds to a material that conserves its volume when
stretched. For any value less than 0)5 the material undergoes some increase in
volume during the deformation. From this point of view, negative Poisson's ratio
values imply an unusual large increase of volume only, not involving any di!erence
in deformation behaviour [2].

In recent years, auxetic isotropic polymers and foams were developed by
cell-shape change from a convex polyhedron to a concave one. In addition to their
negative Poisson's ratio properties, these new materials indicated enhancement in
several properties such as impact absorption, damage resistance and tolerance,
shear modulus and indentation resistance, compared to conventional foam
materials and polymers with positive Poisson's ratio [4].

Honeycomb structures with inverted cells have been reported to have negative
Poisson's ratio in the cell plane [2]. The linear elastic response of these honeycomb
structures, both conventional and re-entrant, has been analyzed by Warren and
Kraynik using a homogenization technique [3]. Gibson and Ashby [2] applied
a beam theory to the unit cell in order to describe the linear elastic behaviour of
conventional and general honeycombs. Evans [5] assessed experimentally the
possibility of using the cellular material theory (CMT) of Gibson and Ashby to
describe the linear elastic response of auxetic honeycombs, using a photographic
technique to detect anticlastic bending deformations of re-entrant paper
honeycomb samples. The same author showed as well that re-entrant cell
honeycombs allow the manufacturing of double-curved sandwich panels without
cell buckling [6].

In this paper the CMT is used to analyze the mechanical properties of auxetic
honeycombs. From the theoretical framework it can be demonstrated that general
honeycombs have orthotropic mechanical properties. This feature allows the use of
"rst order sandwich plate theories [7] to describe the dynamic performance of
sandwich structures with an orthotropic core. Fundamental natural frequencies of
sandwich plates simply supported and in cylindrical bending are computed, as well
as their sensitivities to geometry cell parameters. The importance of the geometric
layout of the unit cell is stressed by the fact that the aspect ratios of the unit cells, as
well as their internal cell angles and thickness of the cell walls de"ne the magnitudes
of Young's and shear moduli of the honeycombs and, moreover, the negative
Poisson's ratio behaviour in the cell plane. As will be shown, it is the negative
internal cell angle (i.e., a re-entrant unit cell layout) which causes the auxetic
behaviour of the honeycomb. Negative Poisson's ratio values are thus a geometric
e!ect, due to the reshape of the microstructure of the cellular material [5].

2. MECHANICAL PROPERTIES OF AUXETIC HONEYCOMBS

According to the CMT [1], the in-plane linear elastic response of general
honeycombs can be described by the geometry of the unit cell and by considering
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the walls of the cells as Euler}Bernoulli beams. The mechanical properties of
a general honeycomb unit cell (Figure 1) can be described by the virgin core
material properties and by three non-dimensional parameters: the internal cell
angle h, the aspect ratio of the cell sides a"h/l, and the relative thickness b"t/l.

When the honeycomb is loaded in the directions X
1
or X

2
the cell walls bend [2].

The response in the cell plane is described by four independent moduli, due to the
fact that the orthotropic relation in equation (2) holds [1]:

E
1
l
21
"E

2
l
12

. (2)

Taking into account axial and shear deformation e!ects [2], the in-plane
Poisson's ratio l

12
can be computed as

l
12

"

cos2 h
(a#sin h) sin h

1#(1)4#1)5l
c
)b2

[1#(2)4#1)5l
c
#cot2 h)b2]

, (3)

where l
c
is the Poisson ratio of the virgin core material. A detailed derivation of

formula (3) is presented in Appendix A. A negative internal cell angle implies
a re-entrant unit cell layout, like the one shown in Figure 2. From equation (3) it
can be seen that the negative Poisson's ratio e!ect is due to the presence of the sine
term in the denominator, thus for negative internal cell angles the values are
negative as shown in Figure 3.

The Poisson ratio of the honeycomb is undetermined for a"!sin h. In reality,
this condition is never achieved, because for geometric considerations the internal
vertices of the cell are not allowed to touch during the deformation.
Mathematically, this condition is described as

h
min

"!sin~1A
a
2B. (4)
Figure 1. Unit cell layout for a regular honeycomb.



Figure 2. Unit cell layout of a re-entrant honeycomb.

Figure 3. The Poisson ratio l
12

for various a values.
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The in-plane Poisson's ratio l
12

is not symmetric for negative internal cell angles.
It can be demonstrated that for a null internal cell angle (i.e., a condition
approaching the rectangular cell honeycomb) the following is valid:

lim
hP0

l
12
"0. (5)

Important design parameters for sandwich constructions are the out-of-plane shear
moduli, which are responsible for the shear core resistance in bending behaviour for
"rst order sandwich theory [7]. Two out-of-plane shear moduli are present for
general anisotropic honeycombs. They can be calculated using the theorems of
minimum potential energy and minimum complementary energy [2]. This
approach results in a unique expression for the shear modulus G , where X is the
13 3
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normal direction to the plane X
1
X

2
; for G

23
upper and lower bounds can be

formulated [8]. Grediac [11] showed the dependency of the shear modulus G
23

on
the ratio between the thickness of the whole honeycomb and the length of the unit
cell. His "nite element analysis allows one to obtain a unique expression for G

23
,

intermediate between the upper and lower bounds calculated by energy
approaches.

The out-of-plane shear moduli show interesting behaviour in the negative cell
angle range. The ratio G

13
/G

c
, where G

c
is the virgin core material shear modulus,

increases signi"cantly for increasing negative angles and low cell aspect ratios;
while for higher values of a there is an opposite behaviour as shown in Figure 4. The
ratio G

23
/G

c
shows a more symmetric behaviour for positive and negative cell

angles, with decreasing values for low cell aspect ratios (Figure 5). It must be
pointed out that for a regular honeycomb (a"1, h"303) the upper and lower
bounds for G

23
/G

c
coincide, leading with the following [2]:

(G
23

/G
c
)
reg

"0)577b. (6)
Figure 5. Out-of-plane shear modulus ratio G
23

/G
s
.

Figure 4. Out-of-plane shear modulus ratio G
13

/G
s
.
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Equation (6) is well supported by experimental results obtained on aluminium and
steel honeycombs [8].

The density o
H

of a general honeycomb is also a!ected by the unit cell geometric
parameters and the density of the virgin core. For low relative densities (b(0)25)
the CMT states the following:

o
H

o
c

"

b(a#2)
2cos h(a#sin h)

, (7)

where o
c
is the density of the core material.

Figure 6 shows that for internal negative cell angles there is an increase of the
density, compared to that of a regular honeycomb. This statement is valid in
particular for low internal cell angles values and cell aspect ratios.

The honeycomb density scales linearly with the thickness of the wall cells (i.e., b),
as well as the out-of-plane shear moduli. The other in-plane properties scale as b2,
and show high sti!ness ratios in the directions X

1
, X

2
. Only for regular hexagonal

cell honeycombs is the degree of anisotropy null [2].

3. ANALYSIS OF SANDWICH PLATES

3.1. CYLINDRICAL BENDING

For very high length-to-width ratios the sandwich plate deformations may be
considered to be independent of the length co-ordinate. In cylindrical bending the
laminate is of in"nite length in one direction (y in this case), and uniformly
supported along the opposite edges x"0, a (see Figure 7). The assumption of equal
upper and lower face sheet thickness has been made in order to model a symmetric
sandwich plate. Further simpli"cation is imposed considering both the face sheets
and core material as the same.
Figure 6. General honeycomb density versus internal cell angle.



Figure 7. Sandwich plate in cylindrical bending.
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From the formulation of Whitney [6, p. 302], assuming rotary inertia absence
and null in-plane and normal loads, the following equations of motion hold:

D
L2t
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!G
13

dAtx
#

Lw
LxB"0,

G
13

dA
Lt

x
Lx

#

L2w
Lx2B"o

t

L2w
Lt2

. (8)

where d is the core thickness and t
x
and w are, respectively, the rotation along the

x-axis and the normal displacement. D is the bending sti!ness of the laminate
de"ned as

D"Es3
c(c#1)
4(1!l2)

, (9)

where c"d/s and s is the face sheet thickness. The total mass o
t
per unit area of the

sandwich plate is

o
t
"s(2o

c
#co

H
). (10)

The static mechanical performance of auxetic sandwich laminates incylindrical
bending is signi"cantly improved using unit-cell cores with negative internal cell
angles and speci"c aspect ratios [9]. Figure 8 shows the maximum central
displacement per unit mass of a simply supported sandwich plate subjected to
a uniform distributed pressure. Both the face sheet and core material is aluminium.
For low negative cell angles and aspect ratios (a(2) the maximum central
displacement is signi"cantly reduced compared to the one of a sandwich plate with
a regular core. This fact allows a consistent increase of the bending sti!ness of the
sandwich laminate.



Figure 8. Non-dimensional maximum displacements for a sandwich plate in cylindrical bending.
j Regular honeycomb.
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For simply supported boundary conditions the generalized co-ordinates assume
the following form [7, p. 308]:

w"A
m
eiu

mt sin
mnx
a

,

t
x
"B

m
eiu

mt cos
mnx
a

. (11)

Substituting equation (11) into equation (8), one obtains an eigenvalue problem.
The solution of the characteristic equation is

u
m
"u6

mS1!
Sm2n2

1#Sm2n2
, (12)

where

S"
1
2A

s
aB

2(a#sin h)(c#1)
cos h(1!l)b

(13)

and

u6
m
"A

mn
a B

2

SEs3
c(c#1)

4o
t
(1!l2)

. (14)

Expression (12) can be arranged in the following form:

u
m
"u8

m
F
geom

(15)
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where

u8
m
"A

mn
a B

2

SEs2
c(c#1)
o
c
(1#l)

, (16)

F
geom

"

aS
b(a#sin h)cos2 h

[4cos h(a#sin h)#c(a#2)b][2ba2cosh(1!l)#s2m2n2(c#1)(a#sin h)]
.

(17)

F
geom

is a non-dimensional quantity including the terms related to the geometry of
the honeycomb and the sandwich plate. The value of equation (17) for a sandwich
plate with regular honeycomb (a"1, h"303) is

Freg
geom

"aS
1)125b

[5)196#3cb][1)732a2(1!l)#14)8s2m2(c#1)]
, (18)

where the su$x reg stands for a reference sandwich plate having a regular core. It is
worth noting that, for a given sandwich core-thickness value, the ratio u

1
/ureg

1
is

equivalent to the quantity F
geom

/Freg
geom

. The simulations for the cylindrical bending
case were carried out for a plate having a"0)5 m, s"0)001 m and c"12. The
honeycomb had a relative density b"0)12. Figure 9 shows the behaviour of
F
geom

/Freg
geom

for various internal cell angles and cell aspect ratios. For values of
a lower than two, the geometric relation (4) holds. The curves in Figures 8 and 9 are
limited by the value h

min
calculated from equation (4).

The ratio F
geom

/Freg
geom

of the laminate is reduced for low h values, as well as for low
aspect ratios. With increasing values of a, the non-dimensional quantity assumes
higher values compared to the ones of the reference laminate for very low internal
Figure 9. F
geom

/Freg
geom

for various a values. d Hexagonal honeycomb. s a"4)0; ) ) ) ) a"2)0; - - - -
a"1)0; ** a"0)5.
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cell angles. This is due to the fact that in the same parameter range the density of an
auxetic core is lower than that of a regular hexagonal honeycomb (Figure 6). For
high negative cell angles, the increase of the density core is signi"cant, while the
shear modulus G

13
is inferior to that of a regular honeycomb, thus leading to

a decrease of the fundamental frequency of the laminate. It is worth noting that the
honeycomb density is inversely proportional to the term a#sin h, which is present
in the square root of the numerator of equation (17).

From Figure 9 the importance of the internal cell angle of the cell can be seen, as
well as the cell aspect ratio a, on the dynamic properties of a sandwich laminate.
From the design point of view it is interesting to investigate the sensitivity of the
non-dimensional quantity (17) versus the geometric cell parameter of the unit cell.
This can be achieved by calculating the following derivatives:

LF
geom

Lh
,

LF
geom
La

. (19)

The quantities in equation (19) were obtained by means of the MAP¸E( code
[10].

Figure 10 shows the derivative of the parameter F
geom

of the laminate versus the
internal cell angle, for various aspect ratio values. The derivative is also plotted
against the corresponding in-plane Poisson's ratio l

12
(Figure 11). Depending on

the a value, the sensitivity versus the cell angle changes sign for positive h values,
where the in-plane Poisson's ratio is positive. Within these values, F

geom
reaches

a maximum as can be observed from Figure 9. The importance of the cell aspect
ratio a is more remarkable especially for negative internal cell angles, as shown in
Figure 12 (1)1)a)4). Steep variations in sensitivity values are observed for low
values of a, close to the limit condition de"ned in equation (4). For higher values,
the sensitivity (and the in-plane Poisson's ratio l

12
) tends to decrease (Figure 13),

suggesting the fact that the dynamic behaviour of high aspect ratio cell honeycombs
Figure 10. LF
geom

/Lh for various a values. s a"4)0; ) ) ) ) a"2)0; - - - - a"1)0; ** a"0)5.



Figure 11. LF
geom

/Lh versus l
12

. s a"4)0; ) ) ) ) a"2)0; - - - - a"1)0; ** a"0)5.

Figure 12. LF
geom

/La for various h angles.
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changes less signi"cantly for a "xed internal cell angle value. This is particularly
true for small internal cell angles, where the in-plane Poisson's ratio assume small
values for high a ratios. The fact is explained by the weak dependence on the
internal cell angle of the out-of-plane shear modulus G

13
for high a values. At the

same time, the density of the honeycomb is proportional to a factor b(a#2)/2a,
which tends to b/2 for very large aspect ratio values. Furthermore, the sensitivity of
auxetic honeycombs versus the cell aspect ratio remains signi"cantly higher
compared to the one of positive cell angle honeycombs. From Figure 13 an increase
up to 4 times can be noted for negative internal cell angles (h"!303).

3.2. SIMPLY SUPPORTED SANDWICH PLATE

The case of a simply supported sandwich plate with identical top and bottom
face sheets with orthotropic properties can be described using the formulations of



Figure 13. LF
geom

/La versus l
12

.
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Whitney [7, p. 307] for a "rst order displacement theory. Neglecting the
contributions of the in-plane loads, as well as the rotary inertia e!ects, the
equations of motion are the following:
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In this case the reduced bending sti!ness terms are

D
11
"D

22
"Es3

c(c#1)
4(1!l2)

, D
12
"lD, D

66
"Es3

c(c#1)
8(1#l)

. (21)

The following solutions satisfy the simply supported boundary conditions:

t
x
"t1

x
eiutcos

mnx
a
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nny
b

,

t
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"t1

y
eiutsin

mnx
a
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a
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nny
b

. (22)
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Imposing equation (22) one obtains an algebraic eigenvalue system. For each
combination of sine wave numbers in the xy plane, the natural frequency can be
calculated imposing a zero value for the determinant of the equations.

From equation (14) it can be observed that the dynamic behaviour of the
laminate is a!ected by the two out-of-plane shear moduli of the honeycomb core.
Due to the degree of anisotropy G

13
/G

23
, the dimensions of the laminate are

important to determine the mechanical performance of the whole laminate.
For the numerical simulations a square simply supported plate is considered,

with a thickness ratio c of 12, and face sheet thickness of 0)1 mm. The dimensions of
the laminate are a"b"0)5 m. As in the case of cylindrical bending, both the face
sheet and core material is aluminium (E

c
"70 GPa, l"0)3, o

c
"2400 kg/m3).

A non-dimensional frequency was de"ned in the following way:

uad
11

"u
11

a2S
o
c
cs

D
11

"u
11

a2S
4o

c
(1!l2)

Es2(c#1)
. (23)

Figure 14 shows the non-dimensional frequency uad
11

versus the internal cell angle
for various cell aspect ratios. The behaviour of the simply supported square
laminate is similar to that of the sandwich plate in cylindrical bending. From
Figure 15, for an aspect ratio of 0)5, the ratio G

13
/G

23
is about 4)0 around the null

internal cell angle (where there is the highest level of anisotropy [2]). For the same
aspect ratio, the maximum non-dimensional frequency is located around 353, where
the density ratio (o

H
/o

c
)/b (from equation (7)), is about 1)42, at the lowest value. For

higher a values, the maximum non-dimensional frequencies are located around the
null internal cell angle, where both the ratio between the shear moduli and the core
density reach their maximum and minimum values respectively.

The sensitivities of uad
11

are shown in Figures 16}19. For increasing positive
internal cell angles (i.e., for positive in-plane Poisson's ratio values), the sensitivities
Figure 14. uad
11

versus cell angle. s a"4)0; ) ) ) ) a"2)0; - - - - a"1)0; ** a"0)5.



Figure 15. G
13

/G
23

versus cell angle. ** a"0)5; ) ) ) ) a"1)0; - - - - a"2)0; s a"4)0.

Figure 16. Luad
11

/Lh for various cell aspect ratios. s a"4)0; ) ) ) ) a"2)0; - - - - a"1)0; ** a"0)5.
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of the fundamental non-dimensional frequency tend to the same values. For
increasing cell aspect ratios, their is a shift of the peak sensitivity curve of uad

11
curves toward h"03 (Figure 16). For negative cell angles, the sensitivities versus
h are always positive, with higher values for negative small cell angles and reduced
a ratios (Figure 16). It is worth noting that in the same range of cell parameters the
honeycomb has the higher magnitude values for the in-plane Poisson's ratio l

12
(Figure 17). The sensitivity of uad

11
versus the cell aspect ratio is shown in Figure 18.

For high a values, the curves for di!erent cell angles show an asymptotic trend.
Higher sensitivities are present for low cell aspect ratio values. Within this
range (1)1)a)2), the di!erence between sensitivities increases for increasing
cell angle magnitudes (h"$303 in our case). This fact can be better observed in
Figure 19.



Figure 17. Luad
11

/Lh versus l
12

. s a"4)0; ) ) ) ) a"2)0; - - - - a"1)0; ** a"0)5.

Figure 18. Luad
11

/La versus various cell angles.

VIBRATION OF AUXETIC SANDWICH PLATES 59
The patterns of sensitivities for plates in cylindrical and general bending have
some common similarities, although the non-dimensional quantities F

geom
and uad

11
are intrinsically di!erent. Furthermore, the similitude between the sensitivities can
be noticed in Figures 12 and 18. For low internal cell angles (!103)h)103) the
di!erence between sensitivities for increasing a tends to decrease. In this parameter
range the ratio of the out-of-plane shear moduli G

13
/G

23
ranges from 0)45 (a"4)0,

h"!103), to 5)8 (a"0)5, h"!103), meaning that the sti!ness behaviour is ruled
mainly by the shear modulus G

13
, as in the cylindrical bending case, for low cell

aspect ratio values (Figure 15). Moreover, for a values close to zero, the honeycomb
is composed of cells approaching the rectangular shape, where the degree of
anisotropy is high and the bending behaviour of the cells is zero for certain
directions of loading [2].



Figure 19. Luad
11

/La versus l
12

.
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For higher aspect ratio values, the sensitivities have an asymptotic trend. This is
explained by the signi"cant aspect ratio dependence of the ratio G

13
/G

23
for high

values of a, which leads to 0)24 on average for 453)h)503.

3.3. FREE VIBRATION OF GENERAL SANDWICH PLATE AND NUMERICAL COMPARISON

In the simpli"ed models shown above, the in-plane and rotary inertia terms were
neglected. The equations of motion for a general symmetric sandwich plate can be
derived from the ones of a laminated plate undergoing shear deformation [7,
p. 266]. Considering the vanishing of the bending-extensional coupling terms and
in-plane loads, the equations of motion assume the following form:
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where (A
ij
, D

ij
)":h@2(l`1)

~h@2(l`1)
C

ij
(1, z2) dz, and C

ij
are the terms of the stress}strain

matrix of the materials composing the sandwich. I is the inertia rotary term for the
laminate.

Considering a simply supported sandwich plate, the following solutions are
imposed:
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b
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b

,

w"wN eiut sin
mnx
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b

. (25)

Introducing equation (24) into equation (23), one obtains a set of homogeneous
equations. In order to obtain non-trivial solutions, the determinant of the
correspondent (5]5) system matrix is set to zero. For every combination of
half-sine wavenumbers mn one obtains "ve natural frequencies.

A "nite element model was prepared using the ANSYS( Rel. 5)4 code [12] to
assess the validity of the results provided by the analytical approach. A square plate
of length of 0)5 m, with total thickness 0)0042 m (c"20) was represented by a mesh
of 144-layered elements SHELL91 with the sandwich option [12]. The material of
the face sheet and the virgin core is aluminium (Young's modulus E"70 GPa,
density o"2400 kg/m3 and Poisson ratio l"0)3). The relative density of the core
was b"0)12. The orthotropic material properties of the core were computed using
the CMT formulas for general honeycombs [2]. A subspace iteration technique
with a basis of eight vectors was adopted to compute the fundamental natural
frequency of the laminate. The comparison between the analytical and numerical
results is shown in Table 1.

4. SOUND TRANSMISSION THROUGH A CYLINDRICAL SANDWICH SHELL

The use of high strength-to-weight ratio materials in transport aircraft may result
in increased interior noise levels. Koval [13] showed that more noise could be
transmitted through laminated "bre-reinforced structures than through isotropic
ones in the frequency range from 1 to 10 times the ring frequency of the shell.
Sandwich structures with honeycomb cores are still widely used in aerospace



TABLE 1

Fundamental frequency u
11

of a simply supported sandwich plate with di+erent core
cell aspect ratios and internal cell angles

a h (deg) FEM (Hz) Analytical (Hz)

2 !10 49)200 49)427
2 !20 46)877 47)055
2 !30 44)221 44)350
3)5 !10 52)768 52)957
3)5 !20 51)300 51)523
3)5 !30 49)458 49)811
4 !10 53)418 53)628
4 !20 52)086 52)360
4 !30 50)374 50)808
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applications. Their acoustic properties are generally poor, outweighing their high
sti!ness-to-weight capabilities. Auxetic honeycombs, due to their improved
sti!ness ratios, could o!er some advantages in sound reduction applications. Koval
showed that a general orthotropic shell, below the ring frequency, has improved
sound reduction capabilities due to the fact that in that region the acoustic
behaviour tends to be sti!ness governed. Choosing the appropriate set of geometric
cell parameters, a re-entrant cell honeycomb o!ers enhanced out-of-plane
mechanical properties, thus suggesting a possible application for sound reduction
in fuselages and duct liners.

To analyze the acoustic properties of an in"nite sandwich orthotropic shell
immersed in a #uid medium the approach of Tang [15] is followed. The orthotropic
shell is described by the Greenberg}Stavsky-type theory, where shear deformation
is taken into account [13]. The interior of the shell is totally absorptive, and the
shell is subjected to an external air#ow at two independent incident angles. The
acoustic properties of the system are described by the transmission loss quantity
[13]:

¹¸"!10Log
10

=T

=I
, (26)

where=T is the transmitted power and=I the incidence power per unit length of
axial section of the shell. Using the approach of Tang an explicit expression of the
frequency spectrum of equation (25) is derived in terms of the modal impedance of
the #uid and the shell.

Figure 20 shows the case of a typical narrow-bodied jet fuselage made of
a sandwich shell, with a regular honeycomb and auxetic ones (a"0)8, 1, b"0)12,
h"!103). The shell radius is R"1)83 m, and the total thickness of the shell is
0)00736 m. A core-face sheet thickness ratio c of 9)5 is assumed. Both face sheet
and virgin core materials are aluminium. The shell is pressurized at 3150 m



Figure 20. Transmission loss factors for sandwich shells with regular and auxetic cores. ) ) ) ) Hexa-
gonal; . . . . alpha"1; ** alpha"0)8.
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(corresponding to 10 000 ft, with air density equal to 0)9041 kg/m3 and speed of
sound of 328)558 m/s). Exterior #uid with incident angles of 0 and 1503 is at the
same conditions of the one inside the shell. The exterior #uid is considered at rest
(null Mach number). The frequency spectrum of the transmission loss factors is
analyzed in the range from 0)1 to 20 times the ring frequency of a corresponding
isotropic shell [15]. The ring frequency u

r
"(2nR)~1JE/o is 445 Hz.

As seen in Figure 20, over the ring frequency the transimission loss factors of
a sandwich shell with an auxetic core are higher than the ones of a sandwich shell
with regular honeycomb. The fact is explained recalling that for low cell aspect
ratios and negative internal cell angles the out-of-plane shear modulus G

13
is higher

than that of a hexagonal regular honeycomb (2)06 times) [9]. The bending sti!ness
of the laminate is thus increased, allowing a better acoustic performance in the
frequency range where the behaviour is sti!ness ruled. Although an auxetic
sandwich shell shows improved bending sti!ness capabilities, the increase of
the core density results in an acoustic behaviour in the low range of frequencies
(below the ring one), which is similar to that of a regular honeycomb sandwich
structure.

6. CONCLUSIONS

Negative Poisson's ratio honeycombs constitute a novel class of material for
sandwich structures. Choosing the appropriate geometrical cell layout, it is possible
to obtain increased values of out-of-plane mechanical properties compared to the
ones of a regular honeycomb. This fact leads to the possibility of having increased
bending sti!ness capabilities, an attractive feature for lightweight structures. For
some particular combinations of cell angle and aspect ratio, enhanced strength
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properties are followed by an increase of the density of the honeycomb, thus leading
to a decrease of the natural frequencies of the structural system. The sti!ness-ruled
features of sandwich structures with auxetic core could be advantageously
employed in structural components where low cut-o! frequency behaviour is
required. The increase of bending sti!ness of a sandwich laminate with an auxetic
core would allow the design of a statically sti! yet dynamically more complaint
structure. As an example, sandwich components where sound transmission
properties are demanding, especially for medium and high ranges of frequencies,
could bene"t from the use of a negative Poisson's ratio core.
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APPENDIX A

Following reference [2], after a loading in the X
1

direction, the cell wall bends.
The cell on itself is treated as a beam of length l, thickness t, depth b and Young's
modulus E

c
. The moment M tending to bend the cell wall is

M"

Pl sin h
2

, (A.1)

where (see Figure 21)

P"p
1
(h#l sin h)b. (A.2)

From standard beam theory

d"
Pl3 sin h
12E

c
I

. (A.3)

The shear de#ection of the member is

d
s
"

Pl3 sin h
12E

c
I

(2)4#1)5l
c
)A

t
lB

2
. (A.4)

An axial load of P cos h acts on the member and the axial de#ection is

d
a
"

Pl cosh
E tb

. (A.5)
Figure 21. Unit cell layout and wall loading in the X
1

direction.

c
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The total de#ection in the X
1

direction is then

d
1
"d sin h#d

s
sin h#d

a
cos h"

Pl3 sin2 h
12E

c
I A1#(2)4#1)5l

c
#cot2 h)A

t
lB

2

B. (A.6)

The relative strain is

e
11

"

d
1

l cos h
. (A.7)

The elastic deformation in the X
2

gives similarly the following de#ection:

d
2
"d cos h#d

s
cos h!d

a
sin h"

Pl3 sin h cosh
12E

c
I A1#(2)4#1)5l

c
!1)A

t
lB

2

B (A.8)

with the relative strain,

e
22
"!

d
2

h#l sin h
. (A.9)

Recalling the meaning of a and b, and applying the de"nition of the Poisson ratio
value we obtain

l
12

"!

e
22

e
11

"

cos2 h
(a#sin h) sin h

1#(1)4#1)5l
c
)b2

1#(2)4#1)5l
c
#cot 2h)b2

. (A.10)

APPENDIX B: NOMENCLATURE

h internal cell angle
a cell aspect ratio
b honeycomb's relative density
E
1

in-plane Young's modulus in the direction X
1E

2
in-plane Young's modulus in the X

2
direction

l
12

in-plane Poisson's ratio
G

13
transverse shear modulus in the plane X

1
X

3G
23

transverse shear modulus in the plane X
2
X

3o
c

density of the virgin core material
l
c

Poisson ratio of the virgin core material
E
c

Young's modulus of the virgin core material
G

c
E
c
/2(1#l

c
)

o
H

density of the general honeycomb
d core thickness
s sandwich face sheet thickness
c d/s
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D bending sti!ness of the sandwich plate"Es3[c(c#1)/4(1!l2
c
)]

A
ij

orthotropic plate coe$cients, equation (24)
D

ij
orthotropic reduced bending plate coe$cients, equations (20)}(24)

u, l,w,t
x
,t

y
plate rotation and displacement components

u
mn

natural frequency mn of the plate
a, b dimensions of the sandwich plate
R sandwich shell radius
u

r ring frequency"(2nR)~1JE/o
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